HowMessy

How Messy is Your Database	<u>Page</u>
How messy is your database?	2
Hashing algorithm	5
Interpreting master dataset lines	12
Master dataset solutions	15
HowMessy sample report (detail dataset)	17
Repacking a detail dataset	22
Detail dataset solutions	26
Estimating response time	29
Automating HowMessy analysis	30
Summary	33

How messy is your database?

- □ A database is messy if it takes more I/O than it should
- Unnecessary I/O is still a major limiting factor even on MPE/iX machines
- Databases are messy by nature
- Run HowMessy or DBLOADNG against your database
 - HowMessy is a bonus program for Robelle customers
 - DBLOADNG is a contributed library program

Blocks

- TurboIMAGE does all I/O operations in blocks
- □ A block may contain many user records
- More entries per block means fewer I/Os
- Fewer I/Os means better performance

Record location in masters

- Search item values must be unique
- Location of entries is determined by a hashing algorithm or a primary address calculation
- Calculation is done on search item value to transform it into a record number between one and the capacity
- Different calculation depending on the search item type
 - X, U, Z, and P give random results
 - I, J, K, R, and E give predictable results

Hashing algorithm

Customer number AA1000 is transformed into a record number

Capacity: 100001

Block 1

Hashing algorithm (no collision)

Customer number BD2134 gives a different record number in a different block

Hashing algorithm (collision - same block)

- Customer number CL1717 hashes to the same record number as AA1000 location
- TurboIMAGE tries to find an empty location in the same block. If it finds one, no additional I/O is required.
- CL1717 becomes a secondary entry. Primary and secondary entries are linked using pointers that form a chain.

Hashing algorithm (collision - different block)

- Customer number MD4884 collides with AA1000
- No more room in this block. TurboIMAGE reads the following blocks until it finds a free record location.
- In this case, MD4884 is placed two blocks away, which requires two additional I/Os.

An example TurbolMAGE database

HowMessy sample report

HowMessy/XL (Version 2.2.1) TurboIMAGE/3000 databases

Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd. Run on: MON, JAN 9, 1995, 11:48 AM Page: 1

Blk
act
11
70
32
23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

HowMessy sample report (master dataset)

HowMessy/XL (Version 2.2.1) TurboIMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd Run on: MON, JAN 9, 1995, 11:48 AM Page: 1

. N/ . . .

					Secon-Max	
	Туре			Load	daries Blks	Blk
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
M-Customer	Man	248113	178018	71.7%	30.5% 1496	11
A-Order-No	Ato	1266783	768556	60.7%	25.7% 1	70
D-Orders	Det	1000000	768558	76.9%	(851445)	32
D-Ord-Items	Det	4000000	3458511	86.5%	(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

Interpreting master datasets lines

- Pay attention to the following statistics:
 - High percentage of Secondaries (inefficient hashing)
 - High Maximum Blocks (clustering)
 - High Maximum and Average Chains (inefficient hashing)
 - High Inefficient Pointers (when secondaries exist)
 - High Elongation (when secondaries exist)

Report on m-customer

- The number of Secondaries is not unusually high
- However, there may be problems
 - Records are clustering (high Max Blks)
 - Long synonym chain
 - High percentage of Inefficient Pointers

Data Set M-CUSTOMEF	Type R Man	Capa 248		Entries 178018	Load Facto 71.7%	d darie r (Higł	on- Max s Blks nwater) <u>6 1496</u>	Blk Fact 11	
			Мах	Ave	Std	Expd	Avg	Ineff	Elong-
S	Search Fi	eld	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
C	USTOM	ER-NO	<u>22</u>	1.92	0.32	1.00	1.90	<u>90.5%</u>	1.90

Report on a-order-no

Very tidy dataset

- Number of Secondaries is acceptable
- Max Blks, Ineff Ptrs and Elongation are at the minimum values, even if the maximum chain length is a bit high

					Seco	on- Max	X			
Туре				Load daries Blks Blk						
Data Set			Capacity	Entries	Fac	tor	(Highwate	r) F	act	
A-ORDE	R-NO	Ato	1266783	768556	60.	7%	<u>25.7%</u>	<u>1</u>	70	
			Max	Ave	Std	Expd	Avg	Ineff	Elong-	
	Search	Field	I Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation	
	ORDE	R-NO	<u>10</u>	1.35	0.62	1.00	1.00	<u>0.0%</u>	<u>1.00</u>	

Master dataset solutions

- Increase capacity to a higher odd number
- Increase the Blocking Factor
 - Increase block size
 - Reduce record size
- Change binary keys to type X, U, Z, or P
- Check your database early in the design
- Use HowMessy on test databases

HowMessy Exercise 1

					Secon-Max		
	Туре			Load	daries Blks	Blk	
Data Set		Capacity	Entries	Factor	(Highwater)	Fact	
A-MASTER	Ato	14505679	9709758	66.9%	36.8% 2395	29	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
MASTER-KEY	37	1.58	1.26	1.00	1.88	48.5%	1.88

HowMessy sample report (detail dataset)

HowMessy/XL (Version 2.2.1) for TurbolMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd. Run on: MON, JAN 9, 1995, 11:48 AM Page: 1

			S	econ- Max		
Туре			Load o	daries Blks	Blk	
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
M-CUSTOMER	Man	248113	178018	71.7%	30.5% 1496	1
A-ORDER-NO	Ato	126673	768556	60.7%	25.7% 1	70
D-ORDERS	Det	1000000	768556	76.9%	(851445)	12
D-ORD-ITEMS	Det	4000000	3458511	86.5%	(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	22	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

Empty detail dataset

- Records are stored in the order they are created starting from record 1
- Records for the same customer are linked together using pointers to form a chain

D-ORD-HEADER

Chains are linked to the corresponding master entry

Blocking factor = 8

Capacity: 100000

Detail chains get scattered

 Over time, records for the same customer are scattered over multiple blocks

Delete chain

- Deleted records are linked together
- □ TurboIMAGE reuses the records in the Delete chain, if there are any

- Indicates highest record location used so far
- Serial reads scan the dataset up to the highwater mark

Repacking a detail dataset

- Groups records along primary path
- Removes Delete chain (no holes)

Interpreting detail dataset lines

Pay attention to the following statistics:

- Load Factor approaching 100% (dataset full)
- Primary path (large Average Chain and often accessed)
- High Average Chain and low Standard deviation, especially with a sorted path (Is path really needed?)
- High Inefficient Pointers (entries in chain not consecutive)
- High Elongation (entries in chain not consecutive)

Report on d-orders

- □ Primary path should be on customer-no, not on order-no
- □ Highwater mark is high
- Repack along new primary path regularly

	Туре				Load	Secon- daries		Blk
Data Set		Capaci	ity En	tries	Factor	(Highwa	ater)	Fact
D-ORDERS	Det	10000	0 768556		76.9%	(<u>851445)</u> 12		
		Max	Ave	Std	Expd	Avg	Ineff	Elong-
Searc	h Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
!ORDI	ER-NO	1	1.00	0	1.00	1.00	0.0%	1.00
S CUST	OMER-N	IO <u>80</u>	14.34	_17.76	1.75	9.20	<u>57.2%</u>	5.25

Report on d-ord-items

- Inefficient Pointers and Elongation are high
- Highwater mark is fairly high
- Repack the dataset regularly
- □ Is the sorted path really needed?

	Туре				Load	Secon- daries		Blk
Data Set		Capa	city	Entries	Factor	(Highw	ater)	Fact
D-ORD-ITEMS	Det	4000	000	3458511	86.5%	(<u>3470</u>	097)	23
		Max	Ave	e Std	Expd	Avg	Ineff	Elong-
Search F	Field	Chain	Chair	n Dev	Blocks	Blocks	Ptrs	ation
S !ORDE	R-NO	1604	8.0	35.75	1.36	<u>11.32</u>	<u>72.5</u>	8.34

Detail dataset solutions

- Assign the primary path correctly; search item with Average Chain length > 1 that is accessed most often
- Repack datasets along the primary path regularly
- Increase the Blocking Factor
 - Increase block size
 - Reduce record size
- Understand sorted paths
- Check your databases early in the design; use HowMessy on test databases

HowMessy Exercise 2

					Secon-Max	
	Туре			Load	daries Blks	Blk
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
D-ITEMS	Det	620571	119213	19.2%	(242025 <u>)</u>	7

		Max	Ave	Std	Expd	Avg	Ineff	Elong-
	Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
S !	ITEM-NO	3	1.00	0.02	1.00	1.00	0.0%	1.00
S	SUPPLIER-NO	23	8.07_	3.25	1.77	3.30	28.4%	1.86
	LOCATION	5938	11.62	63.64	2.24	2.53	13.2%	1.13
	BO-STATUS	99999	99999.99	0.00	17031.00	17047.00	14.3%	1.00
	DISCOUNT	99999	120.18	1337.15	3.73	39.37	31.9%	10.55

Minimum number of disc I/Os

<u>Intrinsic</u>
DBGET
DBFIND
DBBEGIN
DBEND
DBUPDATE
DBUPDATE
DBPUT
DBDELETE

Serial reads: Master Detail

Disc I/Os

- 1 1 1 (non-critical item) 13 (critical item) 3 [+ (4 x #paths, if detail)]
- 2 [+ (4 x #paths, if detail)]

Capacity / Blocking factor # entries / Blocking factor

Estimating response time

- Deleting 100,000 records from a detail dataset with two paths would take:
 - \square 2 + (4 x 2 paths) = 10 I/Os per record
 - 100,000 records x 10 I/Os per record = 1,000,000 I/Os
- Classic: around 25 I/Os per second
 - □ 1,000,000 I/Os / 25 = 40,000 seconds
 - 40,000 seconds / 3600 = 11.1 hours
- □ iX: around 40 I/Os per second
 - □ 1,000,000 I/Os / 40 = 25,000 seconds
 - 25,000 seconds / 3600 = 6.9 hours

Automating HowMessy analysis

- Recent version of HowMessy creates a self-describing file with these statistics
- Process the file with generic tools (Suprtool, AskPlus) or custom programs (COBOL, 4GL), and produce custom reports
- Send messages to database administrators
- □ Write "smart" job to fix databases without user intervention

Datasets more than 80% full

>input loadfile
>if loadfactor > 80
>ext database, dataset, datasettype, loadfactor
>list standard

Only one address per customer

>input loadfile
>if dataset = "D-ADDRESSES" and &
 maxchain > 1

References

□ The TurboIMAGE/3000 Handbook (Chapter 23)

□ Available for \$ 49.95 from:

WORDWARE P.O. Box 14300 Seattle, WA 98114

- TurboIMAGE databases become messy over time, especially if they are active
- HowMessy and DBLOADNG let you analyze the database's efficiency
- You should have some knowledge of the internal workings of TurboIMAGE
- Monitor your databases regularly

